[ICASE

A TRUST REGION ALGORITHM FOR EQUALITY CONSTRAINED MINIMIZATION:

CONVERGENCE PROPERTIES AND IMPLEMENTATION

{NASA-CR-185789) A TRUST RFGION ALGORITHM NB89-T1427

FOR EQUALITY CONSTRAINED MINIMIZATION:
CONVERGENCE PROPERTIES AND IMPLEMENTATION

(ICASE) 135 p unclas

00/61 0224382

Avi Vardi

Report No. 81-9

February 20, 1981

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia

Operated by the

UNIVERSITIES SPACE (A RESEARCH ASSOCIATION

A TRUST REGION ALGORITHM FOR EQUALITY CONSTRAINED MINIMIZATION:

CONVERGENCE PROPERTIES AND IMPLEMENTATION

Avi Vardi

Institute for Computern Applications 4in Science and Engineering

ABSTRACT

In unconstrained minimization, trust region algorithms use directions
that are a combination of the quasi-Newton direction and the steepest.descent
direction, depending on the fit between the quadratic approximation of the
function and the function itself.

Algorithms for nonlinear constrained miﬁimization problems usually
determine a quasi-Newton direction and use é line search technique to deter-
mine the step. Since trust region stratééies have proved to be successful
in unconstrained minimization, we develop a new trust region strategy for
equality constrained minimization. This algorithm is analyzed and global
as well as local superlinear convergence theorems are proved for various
versions.

We demonstrate how to implement this algorithm in a numerically stable
way. A computer program based on this algorithm has performed very satis-

factorily on test problems; numerical results are provided.

This research was partially supported under NSF Grants No. ECS-7921279
and No. ENG 76-08749, and under NASA Contract No. NAS1-15810 while the author
was in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

I. Introduction

Consider the problem of minimizing a smooth nonlinear function subject
to nonlinear constraints: m%n f(x) subject to hj(x) =0, i=1,...m;
m < n. Most of the methods for this problem attempt to transform the con-
strained problem to a related unconstrained problem of minimization or
solving equations and then to translate the quasi-Newton technique on the
unconstrained problem back to the constrained problem. We will mention a
few quasi-Newton methods that are related to this work. They deal with one
type of algorithm: at each iteration a quasi-Newton step is generated and
then a line search technique is used to decide which point should be accepted.
For the purpose of deciding which point to accept, a penalty function is
designed. This function may look like PL(x) = f(x) + Zui|hi(x)] where the

ui's are penalty parameters that have to be determined.

Han [16], using the quadratic programming approach without line
searches, and Tapia [35] using the multipliers update formula approach
generalize the local convergence theory of Broyden, et al. {3] and prove
gq-superlinear convergence. One paper that considers the effect of the
penalty function on local convergence is Chamberlain, et al. [4].

In all these approaches the algorithms use approximations to the
Hessian of the Lagrangian function with respect to x. In order to guaran-
tee local d-superlinear convergence we must assume that the initial
Hessian approximation is close enough to the Hessian at the solution wﬁich
may not be positive definite. Powell [24] analyzes local conVergence and
explains why positive definite Hessian approximations can still be used.

Han [14], under some conditions that bound the Hessian approxima-
tions, establishes global convergence when exact line search (for a
penalty function) is used. A similar analysis with more emphasis on

implementation appears in Powell [25].

In section 2 we derive the quasi-Newton step for the problem. The
main contribution of this paper is the introduction of a trust region
algorithm for equality constrained minimization and this is the subject
of section 3. The idea behind the algorithm is that at each iteration
the quadratic approximation to the function which is used to obtain the
quasi-Newton step is trusted only within a sphere of radius r around
the current point. This strategy has proved to be successful in uncon-
strained minimization (see [31]). The convergence properties of
the algorithm are presented in section 4 and in section 5 we demonstrate
how to implement the algorithm and provide numerical results.

Notation Convention: We use superscripté to denote the iteration
we are in. Thus Axk is the step at the kth iteration. In order to avoid
confusion with powers of matrices we use parentheses in the following way:
(Bk)j denotes the jth power of the matrix Bk where Bk is a matrix
associated with the kth iteration.

We also often replace for convenience (3) by (x,v) and (Av) by

(Ax,Av). All vector norms are Euclidean norms, i.e., || x|| = || X"Z = (in)%.

2. A Quasi-Newton Algorithm

Consider m+1 real valued functions f,hl,...,hm defined on TR".

We are interested in solving the problem

(2.1) min f(x).
x:h(x)=0

We will actually try to find a local minimizer for this problem,
%
i.e., a feasible point x such that there exists a 6 > 0 such that
* * .
for all x satisfying h(x) = 0 and || x-x || <&, £(x) < f(x). Assign

Lagrange multipliers ViseeesV, to each of the constraints and form the

Lagrangian function

-3-

(2.2) L(x,v) = £(x) + h(x)'v ,

The gradient of L will be denoted by

VXL(X,V) Vi(x) + Vh(x)v

VL(x,y) = =
V L(x,v) h(x)
v
where
p 3 ’ahl 3h_)
3f L) e —B(x)
axl(x) Bxl Bxl
VE(x) = E and Vh(x) = E E
oh oh
of 1 ces _ M
5;—(x) 5;—(x) 9% ()
| n L n n |

The Hessian matrix of L will be denoted by

(2.3)
, ViXL(x,v) VivL(x,v) V2E(x) + Zvivzhi(x) Vh (x)
VL(x,v) = =
VixL(x,v) ViVL(x,v) Vh (x) T 0
where
2
Ve = [agkgx (x)} :
. k,%=1,...,n
and

2 aZhi
V'h, () = | ——() for i=1,...,m
+ 9%y 9% T =1,....n

We will assume that f, h1"'°’hm are twice continuously differentiable

and there exists a Lipschitz constant K such that

| Ve - Ve | < x| x-vl ,

and

I Vzhi(x)-VZhi(y)H < K| x-y|]| vi=l.,.eeom Vx,y € R®,

and that f 1is bounded below.
At a local minimizer x* there exists v* € R™ such that
v L(x*,V*) = 0 and for all z € R™ such that Vh(x*)Tz = 0,
zTViXL(xt\f)z > 0. We assume that Vh(x*) is of full rank and that for
all z € lfn, Vh(x*)Tz = 0, zTVixL(xi\;)z > 0. We also assume, for now, that
Vh(x) 1is of full rank for all x E'Bfl; we will show in section 5 how to
handle the case when Vh(x) is not of full rank.
Looking at the Hessian matrix VZL(x,v) as defined by (2.3) we see
that the term ViXL(x,v) requires second derivatives of f and hi's.
Since in practice second derivatives are often unavailable we use approxi-

; 2 . . .
mations B = VXXL(X.V). Having the matrix B we also obtain an approxi-

mation to the matrix VZL(x,v) of the form

B Vh(x)) ViXL(x,v) Vh(x)
B = ~ VL(x,v) = T .
Vh(x) T 0 Vh(x) 0

When B 1is replaced by Bk = VixL(xk,vk) the matrix will be used to

Xk+l k k+l _ vk + Avk.

k
obtain the step Axk,Avk and hence = x + Ax and v

The means for obtaining Axk, Avk are described in this section and

section 3. In order to continue the iterative process Bk must be updated
k+1 k

to B 7. We use the BFGS update formula to update B~ at each iteration.

The BFGS update is due to Broyden [2], Fletcher [10], Goldfarb [12], and

k
_ vxuxk+l’vk+l

Shanno [26]. If . If ¥y) -VXI(xk,Vk+l) and (yk)Tka >0

then
T T
: ko k k, k, k _k
yk Axk Axk BkAxk
k+1 k k . - . . s
Otherwise B =B, If B is symmetric and positive definite then so0 is
Bk+l. Moreover if Bk+l is given by (2.4) it satisfies the secant equation
x %
Bk+lxk = yk. The matrix VixL(x »V) 1is not necessarily positive definite

but the use of positive definite update guarantees, as will be seen later,
descent directions and will not interfere with fast local convergence. In

the implementation we will store and work with the Cholesky decomposition

T
of the matrix, ‘Bk = Cka .

We can now present the quasi-Newton (Q.N.) step for this problem:

bx* -l K ok B vh(| [vEa®) + v E
(2.5) kl =~ (B VL(x ,v) = - T K .
Av Vh(x) 0 h(x)

Quasi-Newton Algorithms usually employ a line search to determine an

+ k k, k .
0 < ak_g 1 such that xk+l = xk + ukAxk, vk L v + o Av satisfy a
certain criterion (like a decrease of a Penalty function).

An equivalent way of computing the Q. N. step is to solve the quadra-

tic programming problem

—6-

min L(xk,vk) +V L(xkvk)TAx + %AXTBkAx ,
Ax X _
(2.6) s.t- B) R i}

h(x) + Vh(H)Tax = 0 .

Now Axk is the solution of (2.6) and Avk is the vector of Lagrange
multipliers corresponding to the linear constraints. The objective function
in (2.6) may be looked at as a quadratic approximation of the Lagrangian func-
tion with Lagrange multipler vk. The quadratic problem thus consists of

minimizing this quadratic approximation subject to the original constraints,

linearized at the point xk.

3. The Trust Region Algorithm

We first motivate our method and then provide the details. 1In a
Trust Region algorithm we have at each iteration a Trust Region sphere
around the current point {xK+ Ax: I| ax|| f_rk} in which we trust the
quadratic approximation of the function or in our case the quadratic
approximation to the Lagrangian function as in (2.6). (The determination

k

of r will be discussed later in this section.) An attempt to add a

trust region to (2.6) results in the problem

. k k
min L(x ,v) + VXL(xkvk)TAx + %AXTBkAx,
Ax

(3.1) s.t.

I
o

h(xk) + Vh(xk)TAx

|8 x|

A
H

and we can immediately observe a difficulty: If rk is too small we

may have {Ax:h(xk) +Vh(xk)TAx= 0} N {Ax: | Ax | f_rk} = ¢. Thus even the

shortest step Ax that satisfies h(xk) + Vh(xk)TAx = 0 lies outside the

Trust Region. We suggest therefore to change the linear constraint in

(3.1) into ah(xk) + Vh(xk)TAx = 0 where o depends on the radius rk

and is determined such that {Ax:ah(xk)i-Vh(xk)TAx==O}f\ {Ax: || ax|| jirk} $ 6.
We now give more details on our method. In order to simplify the nota-

tions we omit the superscripts. Assume we are at the current point x with

Lagrange multiplier v. We take a Q-R decompositioé of Vh(x) with column

pivoting, i.e., find an orthogonal matrix Q, a permutation matrix II and

a nonsingular upper triangular mXm matrix T such that QVh(x)I = (g).
Recall that we have assumed in this section that Vh(x) is of.full rank

Q

Q

~Let Ax(A),Av()) be computed in the following form:

for all x € R®. We partition Q by Q = (), where 6- has 'm rows.

Ax (L) B+AI Vh(x)) ! V. L(x,v)
(3.2) = - T
Av(}) Vh(x) 0 o (A)Yh(x)
where
o(A) = min(l,max l,-li ”B ” “ Q VE(x) |
AoA I 771 R |
and A chosen so that ” Ax(k)” < r. Theorem 3.2 summarizes the

characteristics of Ax()), Av(}) as a function of X in the new model.

We first need the following lemma:

-8~

Lemma 3.1 For any integer p > O, matrix B and g c.IRE, we have that

Ap'(B4-AI)-p-g+-g as A > oo,

Theorem 3.2 Consider (Ax(A),Av()\)) as defined in (3.2). Then Ax(})
and (v+Av(})) do not depend on v for all X > 0. When A tends to
infinity, v+ Av() > ¥, = [Th(0) VR 17 h(x) ~ Va0 VE(x)] and

Ax(}) - %—VL(X,§+) + 0. Finally, || Ax(V)]] is a monotonically decreasing

function of X > O.

B+ ALl Vh(x)

Proof: By multiplying with [} on both sides in (3.2)

Vh(x) T 0
we obtain

(3.3) (B+ AI)Ax + Vh(x) Av + VXL(X,V) =0, . e
A .
o

L

e

(3.4) Vh() Thx + aQORG) = Q-
From (3.3) we get

(3.5) Ax = -(B4—A1)“1VXL(x,v-+Av).
From (3.4) and (3.5) we have

(3.6) Av = [Vh(x)T(B+x1)"1Vh(x)}"1;m(x)-h(x)-Vh(x)T(B+AI)'1vxL(x,v)] ,
which implies that

(3.7) v+Av = [Vh(x) T (B+AD) IWh(x) 1" a() +h(x) - va) LB+ A1) " Lve(x)]

Thus Ax(A) and (v+Av(})) do not depend on v for all A > 0. To get
the asymptotic behavior of Ax(X), Av(\A) we use lemma 3.1. Note that when

A is large, a()) = 1/A. Thus when A tends to infinity

vHAV() = [AVRG) T (B+AD) T I0h(x) 1 h(x) - AVh 0 T (B4 AT) " 1vE ()]

> 17060 (0 1 h) - T e) = ¥,

and from (3.5)

Ax(Q) 3 - ¥V L(x,5,)

The proof that || Ax| is monotonically decreasing to zero is straight—
forward but somewhat long and is omitted here. For a proof see [31].

One of the major difficulties in constrained optimization is in

k+1 k+1
»V

deciding whether (x) dis a better approximation to the solution

T
than (xk,vk). The Lagrangian function L(x,v) = f(x) + h(x) v cannot
serve for this purpose because of the risk of cycling. Instead we use

the penalty function

(3.8) PL(x) = £(x) + I |h (0],

where the ui's are positive fixed constants that are called penalty

coefficients.

Before stating the algorithm it is important to show that at each
iteration there will be a (radius small enough or) A > 0 large enough
such that a penalty function of the form of (3.8) (which will replace
the Lagrangian in the algorithm in order to achieve global convergence)

is also decreased.

-10-

Theorem 3.3 If (Ax,Av) 1is computed as in (3.2) and VL(x,?'r_*_) * 0,
then there exists A > 0 large enough such that L(x+Ax(A),v+Av(})) <

L(x,v+Av(A)). Further assume that Vv i =1,...,m

(3.9) w > |v

vl = O™ 0@ - w6 Ve 1]

Then there exists A > 0 large enough such that PL(x+ Ax(A)) < PL(x)

where PL(x) = f(x) + Zuilhi(x)].

Proof. We will use the asymptotic behavior of Ax,Av as established by

Theorem 3.2. From Taylor's theorem we have
ML(x+Mx,v+ Av) - L(x,v+ Av)] =)\V‘{L(x+\)Ax,v+ AV)TAX for some v € (0.1).

We now use Lemma 3.1 and the fact that VL(x,'Tr_*_) + 0 implies

VXL(X,\7+) + 0 to obtain that when A tends to infinity

AL(x#+ Ax,v+ Av) - LGz, v+ 80] + = LG9 7 LGx,3,) < o.

Next consider PL(x+Ax):

A[PL(x+ Ax) -PL(x)] =

ALE (x4 8x) - £(x) + Zu, ([hy (x+8x) | = [h,)T =

ALVE (x) "Ax + 3Ax V2 £ (x + vAx) Ax

D) usign(h; () (Thy () D+ BAx Vo (x+ Vi) Ax)
1:h, (x)$0 ‘

+ E uioi(Vhi(x) TAx+ %AXTVZhi(x-i- VAxXYAx)].
i: hi(x) =0

-11-

for some v € [0,1] and 0; = *1. The sign of O; 1is not important
because as we shall see, the third term tends to zero when A tends to

infinity. Thus

A[PL(x+ Ax) - PL(x)] = A[VE(x) Ax + 5% V2 £ (x + vAx)Ax

+ 3 wystenth; (0) (e G0 + 30x"7%h (x+ vhx) Bx)
i:hi(x)+0

) uiOi(%AxTVZhi(x4-vAx)Ax)].
i:hi(x)=0

When A tends to infinity, AAx > —VXL(X,$+) and Aeo(A) = 1. Thus

MPL(x+8%) - PLGO] > VEGO VLGY) = 90 ugsign(hy (x))hy ()
ith, (x)$0
~ T ~ .) ~
= VLIV LEGT) - Y (wysien(hy () =Y,)by (),
ithy (x)40
and because the choice of ui's in (3.9) is such that My > lG+il for

all i=1,...,m the last expression is negative and this completes the

proof of the theorem.

We would like to emphasize two nice properties of this model:
a. When r 1is large enough, the full Q.N. step is taken and
A= 0. When r is very small and as a consequence A 1is very large,

1

Ax = - 3 VXL(X,G+) is a steepest descent direction in minimizing L(x,§+).

§+ as defined in Theorem 3.2 does not depend on B and has been used in
other algorithms for equality constrained optimization. (See, e.g. [30].)

b. If a bound on the right-hand side in (3.9) is known, then we

can fix the parameters 1, in the penalty function and there is no need

-12-

to change the ui's in the process of the convergence with the risk of
cycling.
Here is our algorithm.

Algorithm T

Step 1: Start with xo, vO, rO, BO, k=-1.

Step 2: k = k+1.

Step 3: Find Xk (first try Ak = (0) and Axk, Avk such that

, -1
x5 B+ AT vh(x5) VL")

AvEOX Vh (x5 T

Ax

Ax) 0 a (S

(3.10) %

Ll) <25, A% > 0 ana AF(] axX) -5 = 0.

A\

Step 4: Check if PL(xki-AXk)< PL(xk). If not, reduce rk and

return to Step 3.

(If a bound as in (3.9) is not known, u; may be chosen by a method

ndescmibed In section 5¢X .-

Step 5: Check for convergence. If not achieved, continue.

Step 6: Compare the quadratic approximation of L with the value

of the Lagrangian function and its gradient at (xk4-Axk,vk4-AVk) and

. . k+1
accordingly increase or decrease r .

Step 7: Compute yk = VXL(xki-Axk,vki-Avk) - VXL(xk,vki-Avk) and

update Bk+1 = BFGS(Bk,AXk,Yk)-

+
Step 8: xk 1 xk + Axk; vk+1 = Vk + Avk; return to Step 2.

-13-

4. Convergence Properties

The global convergence theorem that appears in this section assumes
that the choice of Ak in Step 3 of Algorithm I is not such that
I (Axk,Avk)” < rk, but instead at each iteration Ak is chosen to
minimize the penalty function PL(xk%-Axk).
Thus we could restate Step 3 and 4 of the algorithm as follows:
Find Xk, AxS = Axk(kk) and Avk(hk) such that

(4.1) PLGE+A505)) = min PLGE+AxSOD).
A:A>0

(We will refer to this as '"exact A-search.')
The following theorem which gives the global properties of the algo-

rithm is similar to Theorem 3.2 in [14].

Theorem 4.1. Assume Algorithm T is performed with exact A-search (4.1)
and there exist two positive numbers a,8 such that az'z j_zTBkz_i Bsz
for each k and any z € R". Also assume that My -i=1,...,m satisfy
inequality (3.9) at all points xk generated by the algorithm and the set
{x:f(x) + Zuilhi(x)l < f(xo) + Zuilhi(xo)l} is bounded. Then the sequence

{xk} remains bounded, and if X is any accumulation point, h(X) = 0 and

there exists a v €]R® such that VEE) + Vh(x)Vv = 0.

Proof. First observe that if Axk = 0, then from theorem 3.2
VXL(xk,vk+-Avk) = 0 and h(xk) = (0. That means that (xk,vkd-Avk)
satisfies the required conditions. Suppose now that for all k, AXk + 0.
From the algorithm we have for all k, PL(xki-Axk) < PL(xk). Thus,
because of the assumptions {xk} is bounded and has an accumulation point

X. Without loss of generality we may assume (by taking a subsequence)

14~

that xk > X, Bk

> B. (B exists and is positive definite because of the
assumed existence of a,B.) Let Ax()), (64—Av(i)) be determined by (3.2)
with x, B replacing x and B. (According to theorem 3.2, AX()) and
(¥+AV())) do not depend on V.) Let A be such that PL(X+A%X())) =
, i PL(Z+40%(V)). Let A% = Ax(A) and (3+4%) = G+4AFN)).

. —_gf Ax = 0, then as above we see that VL(X%, V+AV) = 0. If Ax * 0,
we will obtain a contradiction. Our assumptions imply that Axk(i) + AX.
From theorem 3.3 we can conclude that PL(x+ AX) < PL(X). Let B =

PL(x+AX) - PL(X). Since xk + Axk(i) > X + Ai(i) it follows that for a

sufficiently large k

(4.2) PL =K+ AxS) + % < PL(X).
But PL(X) < PLx') = min PLGS+AxK()) < PLGS+ax00)) + £

b
AtA> 0 2
which for k large enough contradicts (4.2). This completes the proof

of the theorem.

We now establish the local properties of the algorithm. We assume
that 1lim {(xk,vk)} = (xﬁ\f), a local solution, and that Axk + 0 for all
k. We will also assume, for now, that VixL(x*,v*) is a positive definite
matrix. We will discuss the other case at the end of this section. Another

problem is that Algorithm I uses the penalty function PL(x) to decide in

Step 4 whether to accept the step. This may interfere with fast local
convergence. In [4] an example is given which shows that even when we
are arbitrarily close to the solution, the use of the penalty fuﬁétion
may prevent superlinear convergence. Our way of handling this problem
is to change slightly the penalty function so that in a neighborhood of

feasible points the regular Lagrangian function L(x,v) = f(x) + h(x)Tv

=15~

will replace the penalty function in Step 4. More details appear in
section 5. We will still use the penalty function when the point is not
in the neighborhood of a feasible point in order to retain the global
properties of the algorithm.

Since the following discussion deals with what happens in a neighbor-
hood of the solution, we will refer to algorithm II which répresents an
interpretation of algorithm I in which L(x,v) 1is used instead of the

penalty function.

Algorithm II

Step 1l: Start with xo, vo, ro, BO, k = 1.

Step 2: k = k+1.

Step 3 Find rk such that if the step is computed according to (3.10)
and 4:

(4.3) LiE+ A V5 AV < LK, v+ avd).

(Try first X = I (fk)—IVL(xk,vk)H, i.e., check whether the
Q.N. step satisfies condition (4.3).)

Step J: Check for convergence. If not achieved, continue.

Step 6: Compute yk = VXL(xki'Axk,vk+Avk) - VXL(xk,vk+Avk) and update

Bk+1

BFGS(Bk,Axk,yk).

ktl xki-Axk; vk+1 = vki-Avk. Return to Step 2.

Step 7: x

We will show that there exist € > 0, 6 > 0 such that if
* - x Kk -
I x0 - x | <€, | (BO) 1. ViXL(x sV) 1” < § (such a bound is equivalent
* %
to a bound on ” BO"VZL(X sV)“), then the convergence is q-superlinear.

The main tools for local convergence in unconstrained problems were

-16-

established in [3]. Lemma 4.2 is proved there; (we replace the uncon-
strained function with the Lagrangian function with a fixed Lagrange

*
multiplier v .)

Nj=

. * % . . _
Let M = [VXXL(x ,v)]1*. Define the matrix norm || AHM = || MAM”F

where ”D]|F= V/Z dij .
ij

We will also use the fact that there exist a comnstant n > 0 such

that for every nXn matrix A

(4.4) I allz < il all -

* % . 1 2 n
Lemma 4.2 Let (x ,v) be a local solution. For all =z ,z" € R

* x %
” VXL(Zl,V)-'VXL(ZZ,V*)-ViXL(x ,V)” < KO(zl,zz)'“ zz~ zlu

* * x %
where G(zl,zz) = max{|| 2l - x i, | 2% - x Il }. Furthermore, if VixL(x sV)
is invertible there exist € > 0 and p > 0 such that O(zl,zz) <eg

implies that %‘” zz-'le < | VXL(ZZ,V*) - VXL(zl,v*)”.i oll 22-le.

Another important result in the paper by Broyden, Dennis, and More is
the bounded deterioration of (the inverse of or) the Hessian approximations.
Han [13] and Tapia [29] observed that this result also applies to the

constrained case.

Theorem 4.3. There exist positive € and § such that if
* % - % & -
” (xo,vo)-(x ,V)H < £ and H (BO) l--VixL(x SV) l”,‘4 < § and if
+ _+ — -1 +
(x,v)= (x,v) - (B) VL(x,v) and B = BFGS(B,Ax,y) where
+ + + + .
y = VXL(x s V) - VXL(x,v), then B is nonsingular and there exist posi-

tive al’a2’?3 such that

~17-

@5 | @& ra O < S ael Faye(eom, o)

- %* % o~
187 -2 1O, + e v,

[N e S X M|

— a—— ~ and
(R X i I BTl

where 0O =

a((x,v), (x,v')) = maxd]| Guv) - v, I vh - &).

Lemma 4.2 and theorem 4.3 can now be used to obtain the local results
we need. Since the following theorem is similar to theorems in [13] and

[29] the proof is omitted. A proof can be also found in Vardi [31].

Theorem 4.4 There exist positive € and § such that if

” (xo,vo) - (x*,v*)” < € and ” (BO)_l-ViXL(x*,V*)_l” < 8§ then for

all k, rk = ” (ﬁk)-lVL(xk,vk)” is accepted. Furthermore, if

k+1 k+1 k+1
X \V

) = 505 - @) lonE,v%) ana BYYY = Bres B, axk,y5),

(
then [Lo, v [l <o ana || B*H7TT- 2 LT < 28

for all k. Finally, ” (xk+l,vk+l)-(x*,v*)” f_t” (Xk,Vk)— (X*,V*)”

k k * %
for 0 <t <1 so that {(x ,v)} converges to (x ,v) linearly.

Theorem 4.5. There exist positive € and ¢ such that if
0 * & - 2 -
I v - v <e and || BT -2 Lxx, v < 8 and al-
XX M k
gorithm II is followed, then g-superlinear convergence in {(Xk)} is
v

achieved

18-

Proof. Let ¢ and & be those in Theorem 4.4. Then we obtain
k+1 k+1
| v

x %
)-(x ,v)” f_t” (Xk,Vk)-(x*,V*)” for some 0 < t < 1
o k k * &
and conclude that k§1H (x,v)-(x ,v)| <. The next step is to
use (4.5) to show that
ky\-1_g2 * * -1. k
@™ -V Lz ,v) 1y |l

lim = 0
k b
koo [

(see [6]). We now use the inequality

* % -
I (8% - VixL(x v) 1855 | I - BkViXL(x*v*) 1

k
Il]l

| ¥ -2 LGS vt

k
I8

[A

Is*

@™ -v2 LSO

(A | as)

-+

to obtain

* %
e N Iis* - 72 Led vy 1K) .
. im = .
s | o

This further implies

4.7)
x* A k k k) * * k
ﬁk_sz< (x) ' B Vh(x))_(VXXL(}; ,v) Vh(x) (Ax ,
v avE hOT 0 Vh(x)T 0 JS
1im - = 1lim - =
koo Ax Ax
Avk Avk

-19-

Dennis and Moré [6] showed that this implies

IRy K V|
1im =

oo || &V - v ||

i.e., g-superlinear convergence in {(xk,vk)} is achieved.
k *
To conclude this section we discuss what happens when ViXL(x L,V)
is not a positive definite matrix. In such case we cannot talk about
0.-1 _2 * ok -1 .
| 8% -VXXL(x v ol M < § as in theorem 4.3 because there may not be

any positive definite B0 which satisfies this inequality. Recall our assump-

* T T_2 * %
tion (2.5): Vz s.t. Vh(x) 'z =0, z VXXL(X ,v)z > 0; 1in terms of the Q-R
*

* k%

decomposition (see (3.2), (3.3)) Q Vh(x) = (O) and the partition
—%

%

Q =[2*] » this inequality is equivalent to the statement:
Q

=k 2 * Kk =kT _ ..
Q VXXL(X ,Vv)Q is a positive definite matrix.

—0.0=07, "t
Now the question becomes whether it is enough to assume that (Q B Q)
—k * Kk —=kT_ -
(30 from the Q-R decomposition of Vh(xo)) is close to (Q ViXL(x ,v)Q T) 1
in order to get fast local convergences. Powell [24] made an important

step towards answering the question positively. He showed that

= * k=
“ Qk[Bk— V}Z(XL(X’V)]QkTAxkll
1im K =0,
ke I A"
implies two-step superlinear convergence
k+1 *
pm 2=l
e || 2715

-20-

5. Implementation

Algorithm I is an iterative one. Steps 3-8 describe what happens in

each specific iteration and will be discussed here in more detail. Since we

.confine ourselves in this chapter to one specific iteration, we omit the

superscripts.

We use the Cholesky decomposition of B, B = CCT where C 1is a lower
triangular matrix. All the computations from this point on will be done in
terms of this matrix C. In each iteration instead of deriving Bk+l from

Bk, we will derive Ck+l from Ck.

Initialization

x0 does not have to be feasible. It is interesting to notice that

if some of the constraints, say h,,...h_,p < m, are linear, then even if
1 P —
hi(x0)+ 0 for some i < i < p, as soon as the radius of the trust region

is large enough so that a(}) = 1 (say at the kth iteration), then

(x 4-Ax) = h, (x) + Vh (xk)TA k _ for i =1,...,p and the linear

. . s X . 0o .
constraints are satisfied for the rest of the iterative process. Vv is

- 0
set by the program to [Vh(xO)TVh(XO)] l[h(x) - h(xO)TVf(xo)]; it plays
only a role in the initialization of ui's and in the initialization of

C0 which is assigned the value of the identity matrix multiplied by

l VXL(xo,vO)” /ro.

The Q-R Decomposition of h(x) and Its Use

We now clarify what we do when Vh(x) dis not of full rank. Recall
from (3.4) that Ax has to satisfy a(A\)h(x) + Vh(x)TAx = 0. If Vh(x)
is not of full rank it means that there is dependency between the columns
of Vh(x), say Zdthi(x) = 0. If Zdihi(x) = 0 then the equations are
redundant and at least one of them can be removed while if Edihi(x) $0

then the equations are inconsistent. We assume that this is a rare situ-

~21-

ation and when it happens in a specific iteration we remove redundant
or inconsistent equations until the remaining set is independent. We
record the number of times the system lacks full rank and if it happens
more than m times we stop the iterative process.

Technically the removal of redundant or inconsistent equations is
done in the following way: at each iteration we need a Q-R decomposition
of Vh(x), i.e., we have to find an orthogonal matrix, Q, a permutation
matrix I and a & X k matrix T wiFE -Eij =0 for i > j, where
L = rank(Vh(x)), such that QVh(x)I = (g). (If 2 =%k then T is square
and upper triangular.) The decomposition is obtained with the use of
Householder transformations. At the end of the process, if fewer than
k Househol&er transformations were used to obtain T it means that
Vh(x) was not of full rank. The equations that will be ignored are those
that correspond to the remaining columns. (In the computer program we
decide to stop the process if the norm of each remaining column is less
SRR A

Partition T into T = [T,S] where T is an 2 x & wupper tri-

than 10

Q —
angular matrix; also partition Q into Q = iﬁ . where Q has & rows

Q

and let I = [ﬁ;ﬁj where 1I has £ columns. With these notations we

solve the reduced systems a(l)ﬁTh(x) +'ﬁTVh(x)TAx = 0 to obtain

(5.1) Qx = - a(M)h

where h = T_TﬁTh(x).

—22-

Step 3 of the Algorithm

Suppose we are in a new iteration at the point x with a corresponding
Lagrange multiplier v and we have already observed f£f(x), h(x), VE(x) and
Vh(x), and have performed a Q-R decomposition of Vh(x). Also available are
a lower triangular C such that CCT = B 1is an approximation of the Hessian
of the Lagrangian at (x,v) and r, the radius of the trust region. In order

to compute (Ax,Av) let us first multiply (3.3) by 3 from the left to

obtain
TQ(B+AT) (Q 0+ Q Q) Ax + GeVh(x)+Av + QY L(x,v) = 0.
Observing that BVh(x) = (0, we then get

(5.2) Wx(\) = - (QBQL +AT) " T(VE(x) + BQL (Qhx)) .

In order to take advantage of (5.2) we need a decomposiiton of the matrix
EﬁaT. This is best done in the following way: Define M = ab so that

= == T
MMT = QBET. Obtain a Q-R decomposition of M

PMTZ = [g] where P is an
n X n orthogonal matrix, Z an (n-%2) X (n-%) permutation matrix and R

an (n-2) X (n-%£) upper triangular matrix (recall 2 = rank(Vh(x))).

Partition P dinto P = [5:} where P has (n-%) rows. Thus we have
P

(5.3) @yt = mT = TRyt
and
(5.4) WAL = IRRIT; QEQT 4 AT = D(RIR+AD)EL.

At this point we have to decide whether we want to compute Ax(0).

We check whether the distance between x and H = {x+ Ax: ﬁTh(x)i-ﬁTVh(x)TAX'= 0}

-23~

is not greater than r in which case Ax(0) is obviously too long and
we need A > 1. The distance between x and H is | hl = || T-TﬁTh” .

If r > ||h|| we compute 4x(0) as follows:

Ax(0) = Q¥ (@x(0)) + Q- (@x(0)) ,

where ‘aﬁx(O) is —'E from (5.1). Defining
(5.5) - bO) = CTIVER) + €70 @x() = CTVER) - a)CR ,

we get from (5.2), (5.3) and (5.4)

(5.6) A%(0) = Q'R - 0L 5 R YBb(0).

If now ” Ax(0)]] < r we can find v+Av(0) (see below) and go to

the next step. Otherwise we have to find X > 0 such that | ax) |} = r.

We can get an upper bound on the value of A in the following way:

From (5.1) and {(5.2)

Ax(\) = QL (QBQT +AL) Y QVE(x) + BQ (Qhx)) + QF (QAx).

Thus Tt = | 8x | <3 | EG)+aWAR | + «O) || &l This inplies by

straightforward analysis the following bound on A

(5.7a) (1l WE(x) + Q8O || _ — o _
— if r> [|QUEx)+QBQ b || + || n
| r- IR
A S_uo 5<
| Sveco 15 I+ 7l @veo ll+1l &% + 4lReeTa]l - «
max ’

\ 2r

otherwise.

~24—

A lower bound on A can also be derived:

1 if r < |nl
0 otherwise.

Define now the function ¢(A) = || Ax()\)”2 - r; we want to find a
zero of this function. From theorem 3.2 we know that ¢(\) is continuous
and decreases monotonically to -r. ¢ may not be always convex but it
usually is. These characteristics of ¢ lead to an iterative process
that was first suggested by Hebden {16] and Moré [19] for the nonlinear

least square problem. In this process we set
Mo pd Z o0+ s0d) o3
r 60D

. .
J+l,“J 1

is the j-th iterate) and check that

XJ+1¢: L) where 23+l,u3+1 are the best lower and upper bounds

known for A. 1In practice this method is quickly convergent and requires
on average less than 2 A-iterations per radius to obtain A such that
[¢(A)] < 0.125+ r.

By using (5.3), (5.4) and (5.5) we can rewrite (5.2) as
Tx) = -T®R+AD) IR

or
(R

(5.8) .
o)

Thus we have a linear least squares problem and in order to solve it we
R

have to obtain a Q-R decomposition of the matrix (1) . This is
A21

done with the use of Givens transformations to get a 2(n=%) X 2(n-%) ortho-

-25-

gonal matrix W and an (n-%) X (n-%) upper triangular R such that

R R
W(X%I) = (0). (We do not have to store W; the computations that have to

be done with W are done while the decomposition is taking place.) Thus

(5.9) R'R + A = ROR.
) where W has (n-%) rows. Thus

R
(5.10) » e
: ' A1

These decompositions enable us to compute Ax(}) and %X ” Ax(l)”

=l =|

Partition W into (

=

R .

and thus to obtain ¢(A) = [Ax(A)| - r and
$T(N) = L 3 %X-” Ax()\)”2 . For complete details see [31]. We

| A=) ||

also obtain
v+ Av = - T Q[(B+ AT)Ax+ VE(x)].

This is the unique solution to (3.3) if Vh(x) is of full rank in which
case ﬁ' is square and invertible. When Vh(x) -is not of full rank
we must decide on appropriate Lagrange multipliers for the constraints
that have been ignored. The specific choice of (v+ Av) above sets

the multipliers for these constraints to zero which means that they will

+
have no influence on B .

Steps 4-6 of the Algorithm

In step 4 of Algorithm I we use the penalty function
PL(x) = f(x) + Zuilhi(x)[to decide whether the step is acceptable.

We now déscribe how the ui's are set in PL(x). We recall from
theorem 3.3 that in order to guarantee descent of this penalty function

we need

-26—-

w > 191 = (o Tmed) 1 aed) - medyTvead)

for i=1,...,m; for all j = 0,1,...

0
In the program ui's are initialized to My = 2. vgl. Then at each
iteration we update the ui's by
~j . ~J 3
. 2+ |37 if 20 || 2wy
(5.11) ug+l - i i i)

-;--(u31+2- |§Ji|) if 2. l%3i| <ud

As we commented in section 4, we modify the definition of PL(x)
so that when the x's are getting feasible, the regular Lagrangian func-
tion will replace the penalty function so that, as our local theorems show,
g-superlinear convergence can result. This is done by gradually changing
each of the ui's into a Lagrange multiplier when the point is in a neigh-
borhood where the corresponding constraint is satisfied.

We have three tests that are designed to check three stopping criteria:

the f convergence test, VL convergence test and x convergence test. In

the program the user is asked to specify €1 >0, €9 > 0, €q > 0, €, > 0,
and funmin, a lower bound on the function.
f convergence test - stop if f(x) ~ funmin < €, and | h))| < €,
VL convergence test - stop if || VXL(X,V)” <€, and Il nx) || < €4
x convergence test - stop if || Ax || < 63(” x||+ 1).
-8 -5 -10 _ 16
The test problems were run with El =10 7, €y = 10 7, €y = 10 > € 10

on an IBM/370.
As for step 6, the program has a series of tests which is designed

to compare the qudratic approximations of the Lagrangian function L with

2
fit. At times, when the raduction in the Lagrangian value is much better

kt+l 2 k
L itself., The new radius is set to r = (1) *|]| Ax || according to the
1

27—

than expected we may recompute a step with rk = Zrk before moving to the
. . k k k . k_ 1.k
next iteration. Also if PL(x +Ax) > PL(x) we will take r = 3r" and

recompute the step. For more details on assessing the quadratic model see

Vardi [31].

Step 7 of the Algorithm

In (2.4) we gave the BFGS formula for updating the matrix B to
+
obtain the matrix B . We now want to use the Cholesky decomposition of B,
B = CCT. Dennis and Schnabel [8] recommend the following method: obtain

a Q-R decomposition of the matrix (J+)T

= CT + v(y-—Cv)T/vTu where

T , T, \.T R .
v = (y s/s"Bs)®C’s by using Givens transformations and taking advantage of
the fact that (J+)T is a rank-one correction of an upper triangular matrix.

+. 1 + -+ +
Thus we get (J)T =Q (©)T. c is then the Cholesky decomposition of the

BFGS update of B, i.e., B+ = C+C+T. Of course if yTs < 0, J+ is not
well defined and we just take C+ = C.

The program also contains a subroutine that obtains a rough estimate of
the condition number of B by checking the ratio between the largest
diagonal element and the smallest diagonal element of C. If the ratio
is too high the column that contains the low diagonal element is changed.

In general the trust region model may prevent some of the numerical

problems because the conditions number of the matrix d§§§r+-AI) as a

function of A is monotonically decreasing.

Testing the Program

The program has been tested extensively with test problems that appear
in the literature. (See Himmelblau [17], Miele et al. [18], Solow [27] and
Wright [32].) In order to check the global convergence, we added for each
of these problems starting points that were much further from the known solu-
tion than the suggested starting points; convergence was always obtained.

0
For all problems we used r = 1.

-28-

¥We give the results of the following problems:

2 4
Probiem 1: | £x) = (%] - x27 # (x, - Xg)
= 2 4
hl(x) =Xt XXy *Xg - 3.

£(x*) = 0.

R _ _ 2 .2 2 i
Problem 2: f(x) = 1000 X Zx2 Xz = X3Xp T XXz

_ .2 2 2
hl(x) =Xt Xy X - 25

hz(x) = 8x1 + 14x2>+ 7x3 - 56.
f(x*) = 961.71517.
Problem 3: £(x) = - (xl Xyt Xg - 7)3
_ 2 2 2
hl(x) =X{ t Xy + Xz 2

hz(x) =X, - exp(xl).
£(x*) = 117.0622.

Problem 4: f(x) = exp(xlx2 - xg)

h (x) = X2 + x5 - 2
1 (X)) = X7+ xg -

_ U3
hz(x) = XXy ¢ X5 * Xg.
f(x*) = 0.16550395.

2 4 4
Problem 5: f(x) = X Xy * (xl-l) + (x2 - x3) + (x3-1)2
. 2 .
hl(x) = XX, + 51n(x4-x3) -4
_ .2 2.4
hz(x) =X, * XX, - 10.

Two local solutions: f(x*) = -4.496926; f(x*) = 1.9046409.

Problem 6: f(x) = X X XX Xe
_2,..2 .2, 2. .2 -
hl(x) =Xpt Xy b xz o4 X] o+ Xg - 10

hz(x) = XoXg - 5x4x5
_ 3 3
h3(x) =Xt xy ¢t 1.

f(x*)

-2.9197004.

-29-

Problem 7: f(x) = exp(x1x2x3x4x5)
constraints as in problem 6.
£(x*) = 0.053949848 = exp(-2.9197004).

2 2 3 4
Problem 8: f(x) = (xl-l) + (xl—xz) + (xz-xs) + (xs-x4) + (x4-x5)4

+ xg -2-3/2

hz(x) X, = Xz + Xy + 2 - V2

hl(x) =X *Xx

LN

hS(X) = XX - 2.

Five local solutions: £(x*) = 0.029310831;
f(x*)
f(x*)

27.871905; £(x*) = 44.022072;

LI}

52.90258; £(x*) = 607.03552.
Problem 9: £(x) = (x;-1)% + (x;-x,)% + (xo-1)% + (x,-1? + (x -1°
' 1 17X, 3 4 5

= 2 : x.) -
hl(x) = XX, * sm(x4 xs) 2.8284

_ 42
hz(x) =X, + X7Xy 9.4142.
f(x*) = 0.24150237.

2
Problem 10: £(x) = (x,-1)% + Gy x)” + ()

4

3" 8.2426.

hl(x) = x1(1+x§) + X
f(x*)

0.032567769.

Problem 11: £(x) = (x,-x,)* + (x,x5-2) % + (x-D% + (xs-l)z

hl(x) =X+ 3x2
hz(x = Xz * X, -sz
hs(x) =Xy - X
£(x*) = 4.0930233.

_Problem 12: £(x) = 4x] + 2x5 + 2x5 - 33x) + 16x, - 2x,
hl(x) = ng + 3x1 -7
hy(x) = x + 4x, - 11
£(x*) = -99.555041.

-30-

TEST RESULTS

No. of No. of
Problem number Starting point Function eval. Gradient eval.

1 (2.4,.5,0) 28 24
1 (10,-10,10) 78 50
2 (-5,-10,5) 18 11

2 (10,10,10) 20 14

2 (50,50,50) 23 15
3 (0,1,1) 11 8
3 (-10,10,10) 34 21
4 (-1,1,1) 9 8
4 (-10,10,10) 22 15
5 (3.159,3.162,0,1) 19 16
5 (10,10,10,10) 47 35
6 (-1,1.5,2,-1,-2) 18 10
6 (-10,10,10,-10,-10) 25 11
7 (-2,2,2,-1,-1) 8 8
7 (-1,-1,-1,-1,-1) 14 10
8 (-1,3,-0.5,-2,-3) 16 13
8 (-1,2,1,-2,- 15 12

8 (1,1,1,1,1) 13 11

- 8 (2,2,2,2,2) 13 10
8 (10,10,10,10,10) 25 21

8 (-2,-2,-2,-2,-2) 45 22
9 (2,2,2,2,2) 16 14
9 (10,10,10,10,10) 91 64
10 (1.5,1.5,1.5) 13 11
10 (10,10,10) 20 15
S 11 (2,2,2,2,2) 13 9
11 (10,10,10,10,10) 16 11
12 (4,-3,4) 11 10
12 (10,-10,10) 15 11

Acknowledgment

I would 1like to express my sincere appreciation to M. J. Todd and
J. E. Dennis for their guidance and helpful suggestions which have

greatly contributed to this work.

-31-

References

[1] M. Avriel, Nonlinearn Programming: Analysis and Methods, Prentice-
Hall, Inc, 1976.

[2] cC. G. Broyden, The convergence o4 single rank quasi-Newton methods,
Math. Comput., 24 (1970), pp. 365-382.

[3]1 C. G. Broyden, J. E. Dennis, and J. J. Moré, On the Local and super-
Linear convergence of quasi-Newton methods, J. Inst. Math. Appl., 12
(1973), pp. 223-246.

[4] R. M. Chamberlain, C. Lemarechal, H. C. Pedersen, and M. J. D. Powell,
The watchdog fechnique fon foreing convergence in algornithms fon con-
sthained optimization, presented at the Tenth International Symposium
on Mathematical Programming, Montreal (1980).

[5] A. C. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson, An
estimate for the condition number oﬁ‘a mathix, SIAM J. Numer. Anal.,
16 (1979), pp. 368-375.

[6] J. E. Dennis and J. J. Moré, A characterization of superlinear conver-
gence and L{ts applications to quasi-Newtfon methods, Math. Comput.
(1974), pp. 549-560.

[7] J. E. Dennis and J. J. Moré, Quasi-Newton methods, motivation and theory,
SIAM Review, 19 (1977), pp. 46-89. |

[8] J. E. Dennis and R. B. Schnahel, Quasi-Newton methods forn unconstrained
nonlinear problLems. Manuscript (1980) in preparationm.

[91 J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart, LINPACK
Userns Guide; SIAM.

[10] R. Fletcher, A new approach to variable metric algorithms, Comput. J.,

13 (1970), pp. 317-322.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

{22}

~32-

P. E. Gill, W. Murray, and R. A. Pitfield, The impLementation of two
nevised quasi-Newton algorithms fon unconstrained optimization,

Nat. Phys. Lab. NAC II (1972).

D. Goldfarb, A family o4 variable metric methods derived by variational

meansd, Math. Comput., 24 (1970), pp. 23-26.

S.-P. Han, Superfinearly convergent variable metric algornithms fon
general nonlinear programming probfems, Math. Programming, 11 (1976),
PP. 263-282. |

S.-P. Han, A globally convergent method for nonlinean programming,

J. Optimization Theory Appl., 22 (1977), pp. 297-309.

S.-P. Han, A hybrid method for nonlinear proghamming, TR 78-331,
Department of Computer Science, Cornell University (1978).

M. D. Hebden, An algorithm forn minimization using exact second deriva-
Zives, A.E.R.E., Harwell, T.P. 515 (1973).

D. M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, 1972.

A. Mieie, P. E. Moseley, A. V. Levy, and G. M. Coggins, J. Optimization
Theory Appl., 10 (1972), pp. 1-33.

J. J. Moré, The Levenberg Marquardt Algornithm: Impzemeniation and
theony, Numerical Analysis, Lecture Notes in Math 630, Editor,

Watson, Springer-Verlag, 1978.

J. M. Ortega and W. C. Rheinboldt, Itendiive'SozuIXOn o4 Nonlinear
Equation in Sevehaﬁ.VaniabkeA, Academic Press, 1970.

M. J. D. Powell, Convergence properties of a class of minimization
algorithms, NLP2, Editors, Meyer and Robinson, Academic Press (1975).
M. J. D. Powell, Algornithms for nonlinearn constraints that use
Lagrangian functions, Presented at the Ninth International Symposium

on Math. Programming, Budapest, 1976.

[23]

[24]

[25]

[26]

[27]

[28]

(29]

[30]

[31]

[32]

-33~

M. J. D. Powell, Variable metric methods fon constrained optimization,
Presented at the Third International Symposium on Computing Methods
in Applied Sciences and Engineering, Paris, 1977.

M. J. D. Powell, The convergence o4 variable metnic methods for non;
Linearly comsthained optimization calculations, NLP3, Editors, Meyer
and Robinson, Academic Press, 1978.

M. J. D. Powell, A fast algornithm for nonlinearly constrained optimi-
zation calculations, Numerical Analysis, Lecture Notes in Mathematics
630, Editor, Watson, Springer-Verlag, 1978, pp. 144-157.

D. F. Shanno, Conditioning of quasi-Newton methods forn function minimi-
zation, Math. Comput., 34 (1970), pp. 647-656.

D. Solow, Decomposition in Fixed Point Computaticn, Ph.D. Thesis,

Stanford University, 1977.

G. W. Stewart, Introduction to Matrnix Computation, Academic Press,
1973.

R. A. Tapia, Diagonalized multiplier methods and quasi-Newton metheds
fon constrained optimization, J. Optimization Theory & Appl., 22 (1977),
pp. 135-194.

R. A. Tapia, Quasi-Newton methods forn equality contrained optimization:
equivalence of existing methods and a new implementation, presented at
the Noplinear Programming Symposium 3, Madison, WI, 1977.

A. Vardi, Trust region strategy forn uncomsthained and contriand mini-
mization, Ph.D. Thesis, School of Operations Research and Industrial
Engineering, Cornell University, 1980.

M. Wright, Numerical methods for nonlinearly consitrained optimization,

SLAC Report No. 193, Stanford University, 1976.

